The finiteness conjecture for skein modules
Autor: | Sam Gunningham, David Jordan, Pavel Safronov |
---|---|
Přispěvatelé: | University of Zurich |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
17B37 Quantum groups (quantized enveloping algebras) and related deformations
General Mathematics 57K31 Invariants of 3-manifolds (also skein modules character varieties) 340 Law Geometric Topology (math.GT) 610 Medicine & health Mathematics::Geometric Topology Mathematics - Geometric Topology 10123 Institute of Mathematics 510 Mathematics Mathematics::Quantum Algebra Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Representation Theory (math.RT) Mathematics::Symplectic Geometry Mathematics - Representation Theory |
Zdroj: | Gunningham, S, Jordan, D & Safronov, P 2022, ' The finiteness conjecture for skein modules ', Inventiones mathematicae . https://doi.org/10.1007/s00222-022-01167-0 |
DOI: | 10.1007/s00222-022-01167-0 |
Popis: | We give a new, algebraically computable formula for skein modules of closed 3-manifolds via Heegaard splittings. As an application, we prove that skein modules of closed 3-manifolds are finite-dimensional, resolving in the affirmative a conjecture of Witten. 39 pages; final published version |
Databáze: | OpenAIRE |
Externí odkaz: |