Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species
Autor: | Shu-Fen Li, Hong-Bing She, Long-Long Yang, Li-Na Lan, Xin-Yu Zhang, Li-Ying Wang, Yu-Lan Zhang, Ning Li, Chuan-Liang Deng, Wei Qian, Wu-Jun Gao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Retroelements
Organic Chemistry Terminal Repeat Sequences General Medicine Catalysis Computer Science Applications Inorganic Chemistry Evolution Molecular evolutionary dynamics LTR-retrotransposons Cucurbitaceae species genome structure gene expression Genome Size Physical and Theoretical Chemistry Molecular Biology Spectroscopy Genome Plant Phylogeny |
Zdroj: | International Journal of Molecular Sciences; Volume 23; Issue 17; Pages: 10158 |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms231710158 |
Popis: | Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G.pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |