Game semantics for first-order logic

Autor: Olivier Laurent
Přispěvatelé: Preuves, Programmes et Systèmes (PPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
FOS: Computer and information sciences
Computer Science - Logic in Computer Science
General Computer Science
Game semantics
Computer science
classical logic
0102 computer and information sciences
intuitionistic logic
Mathematical proof
01 natural sciences
Theoretical Computer Science
Realizability
Computer Science::Logic in Computer Science
0101 mathematics
first-order logic
010102 general mathematics
Classical logic
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
F.3.2
F.4.1
F.3.3

lambda-calculus
lambda-mu-calculus
game semantics
First-order logic
Logic in Computer Science (cs.LO)
Algebra
type isomorphisms
realizability
ACM F.3.2
F.4.1
F.3.3
[MATH.MATH-LO]Mathematics [math]/Logic [math.LO]
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
010201 computation theory & mathematics
Pointer (computer programming)
TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS
control category
Computer Science::Programming Languages
full completeness
Zdroj: Logical Methods in Computer Science
Logical Methods in Computer Science, Logical Methods in Computer Science Association, 2010, 6 (4), pp.3. ⟨10.2168/LMCS-6(4:3)2010⟩
ISSN: 1860-5974
DOI: 10.2168/LMCS-6(4:3)2010⟩
Popis: International audience; We refine HO/N game semantics with an additional notion of pointer (mu-pointers) and extend it to first-order classical logic with completeness results. We use a Church style extension of Parigot's lambda-mu-calculus to represent proofs of first-order classical logic. We present some relations with Krivine's classical realizability and applications to type isomorphisms.
Databáze: OpenAIRE