Mining evolutions of complex spatial objects using a single-attributed Directed Acyclic Graph

Autor: Jean-François Boulicaut, Jérémy Sanhes, Claude Pasquier, Frédéric Flouvat, Nazha Selmaoui-Folcher, Chengcheng Mu
Přispěvatelé: Institut de sciences exactes et appliquées (ISEA), Université de la Nouvelle-Calédonie (UNC), Image & Pervasive Access Lab (IPAL), National University of Singapore (NUS)-MATHEMATIQUES, SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION (UJF)-Agency for science, technology and research [Singapore] (A*STAR)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institute for Infocomm Research - I²R [Singapore], Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Data Mining and Machine Learning (DM2L), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2)
Rok vydání: 2020
Předmět:
Zdroj: Knowledge and Information Systems (KAIS)
Knowledge and Information Systems (KAIS), Springer, 2020, ⟨10.1007/s10115-020-01478-9⟩
ISSN: 0219-3116
0219-1377
DOI: 10.1007/s10115-020-01478-9
Popis: Directed acyclic graphs (DAGs) are used in many domains ranging from computer science to bioinformatics, including industry and geoscience. They enable to model complex evolutions where spatial objects (e.g., soil erosion) may move, (dis)appear, merge or split. We study a new graph-based representation, called attributed DAG (a-DAG). It enables to capture interactions between objects as well as information on objects (e.g., characteristics or events). In this paper, we focus on pattern mining in such data. Our patterns, called weighted paths, offer a good trade-off between expressiveness and complexity. Frequency and compactness constraints are used to filter out uninteresting patterns. These constraints lead to an exact condensed representation (without loss of information) in the single-graph setting. A depth-first search strategy and an optimized data structure are proposed to achieve the efficiency of weighted path discovery. It does a progressive extension of patterns based on database projections. Relevance, scalability and genericity are illustrated by means of qualitative and quantitative results when mining various real and synthetic datasets. In particular, we show how such an approach can be used to monitor soil erosion using remote sensing and geographical information system (GIS) data.
Databáze: OpenAIRE