Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms
Autor: | Karlheinz Peter, Alex L. Huang, Axel Kallies, Paula Loveland, Alex Bobik, Anh Cao, Peter Kanellakis, Tin Kyaw, Ban-Hock Toh |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mice
Knockout ApoE Plasma Cells Myocardial Infarction Spleen Inflammation 030204 cardiovascular system & hematology Plasma cell Immunoglobulin G Mice 03 medical and health sciences 0302 clinical medicine Immune system medicine Alarmins Animals Receptor 030304 developmental biology B-Lymphocytes 0303 health sciences biology business.industry Germinal center Atherosclerosis Plaque Atherosclerotic Mice Inbred C57BL Disease Models Animal medicine.anatomical_structure biology.protein Cancer research medicine.symptom Antibody Cardiology and Cardiovascular Medicine business |
Zdroj: | European Heart Journal. 42:938-947 |
ISSN: | 1522-9645 0195-668X |
DOI: | 10.1093/eurheartj/ehaa995 |
Popis: | Aims Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI. Methods and results We used an apolipoprotein-E-deficient (ApoE−/−) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells. One week after inducing MI in atherosclerotic mice, we depleted B cells using an anti-CD20 antibody. This treatment prevented subsequent immunoglobulin G accumulation in plaques and MI-induced accelerated atherosclerosis. In gain of function experiments, we purified spleen B cells from mice 1 week after inducing MI and transferred these cells into atherosclerotic ApoE−/− mice, which greatly increased immunoglobulin G (IgG) accumulation in plaque and accelerated atherosclerosis. These B cells expressed many cytokines that promote humoural immunity and in addition, they formed germinal centres within the spleen where they differentiated into antibody-producing plasma cells. Specifically deleting Blimp-1 in B cells, the transcriptional regulator that drives their terminal differentiation into antibody-producing plasma cells prevented MI-accelerated atherosclerosis. Alarmins released from infarcted hearts were responsible for activating B cells via toll-like receptors and deleting MyD88, the canonical adaptor protein for inflammatory signalling downstream of toll-like receptors, prevented B-cell activation and MI-accelerated atherosclerosis. Conclusion Our data implicate early B-cell activation and autoantibodies as a central cause for accelerated atherosclerosis post-MI and identifies novel therapeutic strategies towards preventing recurrent cardiovascular events such as MI and stroke. |
Databáze: | OpenAIRE |
Externí odkaz: |