Two-photon quantum interference and entanglement at 2.1 µm

Autor: Prabhakar, Shashi, Shields, Taylor, Dada, Adetunmise C., Ebrahim, Mehdi, Taylor, Gregor G., Morozov, Dmitry, Erotokritou, Kleanthis, Miki, Shigehito, Yabuno, Masahiro, Terai, Hirotaka, Gawith, Corin, Kues, Michael, Caspani, Lucia, Hadfield, Robert H., Clerici, Matteo
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Science Advances 6 (2020), Nr. 13
Popis: Quantum-enhanced optical systems operating within the 2- to 2.5-μm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-μm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Databáze: OpenAIRE