Intelligent Soft Computing Models in Water Demand Forecasting
Autor: | Sina Shabani, Peyman Yousefi, GholamrezaNaser, Jan Adamowski |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Soft computing
Mathematical optimization Coefficient of determination Mean squared error Computer science Lag Data classification Real-time computing 0207 environmental engineering 02 engineering and technology Function (mathematics) 010501 environmental sciences 01 natural sciences 6. Clean water Support vector machine Polynomial kernel 020701 environmental engineering 0105 earth and related environmental sciences |
Zdroj: | Water Stress in Plants |
Popis: | Given the increasing trend in water scarcity, which threatens a number of regions worldwide, governments and water distribution system (WDS) operators have sought accurate methods of estimating water demands. While investigators have proposed stochastic and deterministic techniques to model water demands in urban WDS, the performance of soft computing techniques [e.g., Genetic Expression Programming (GEP)] and machine learning methods [e.g., Support Vector Machines (SVM)] in this endeavour remains to be evaluated. The present study proposed a new rationale and a novel technique in forecasting water demand. Phase space reconstruction was used to feed the determinants of water demand with proper lag times, followed by develop‐ ment of GEP and SVM models. The relative accuracy of the three best models was evaluated on the basis of performance indices: coefficient of determination (R2), mean absolute error (MAE), root mean square of error (RMSE), and Nash-Sutcliff coefficient (E). Results showed GEP models were highly sensitive to data classification, genetic operators, and optimum lag time. The SVM model that implemented a Polynomial kernel function slightly outperformed the GEP models. This study showed how phase space reconstruction could potentially improve water demand forecasts using soft computing techniques. |
Databáze: | OpenAIRE |
Externí odkaz: |