On a rank factorisation problem arising in gearbox vibration analysis

Autor: Alban Quadrat, Roudy Dagher, Axel Barrau, Yacine Bouzidi, Elisa Hubert
Přispěvatelé: Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), Université Jean Monnet [Saint-Étienne] (UJM), SAFRAN Group, Géométrie, Algèbre, Informatique, Applications (GAIA), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Service Expérimentation et Développement (SED [Lille]), Institut National de Recherche en Informatique et en Automatique (Inria), OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Université Jean Monnet - Saint-Étienne (UJM)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0209 industrial biotechnology
Pure mathematics
Polynomial
Rank (linear algebra)
[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA]
Field (mathematics)
02 engineering and technology
[SPI.AUTO]Engineering Sciences [physics]/Automatic
Matrix (mathematics)
020901 industrial engineering & automation
Factorization
Demodulation
0202 electrical engineering
electronic engineering
information engineering

[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Linear algebra
Mathematics
Modulation
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Vibration analysis
020208 electrical & electronic engineering
Linear system
[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
Control and Systems Engineering
Factorisation methods
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Phase modulation
Zdroj: IFAC 2020-21st World Congress
IFAC 2020-21st World Congress, Jul 2020, Berlin / Virtual, Germany
Popis: International audience; Given a field $K$, $r$ matrices $D_i \in K^{n \times n}$, a matrix $M \in K^{n \times m}$ of rank at most $r$, in this paper, we study the problem of factoring $M$ as follows $M=\sum_{i=1}^r D_i \, u \, v_i$, where $u \in K^{n \times 1}$ and $v_i \in K^{1 \times m}$ for $i=1, \ldots, r$. This problem arises in modulation-based mechanical models studied in gearbox vibration analysis (e.g., amplitude and phase modulation). We show how linear algebra methods combined with linear system theory ideas can be used to characterize when this polynomial problem is solvable and if so, how to explicitly compute the solutions.
Databáze: OpenAIRE