Mitogen-Activated Protein Kinase Phosphatase 1 Disrupts Proinflammatory Protein Synthesis in Endotoxin-Adapted Monocytes
Autor: | Laura Brudecki, Mohamed El Gazzar, Donald A. Ferguson, Charles E. McCall |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Microbiology (medical)
MAPK/ERK pathway Clinical Biochemistry Immunology Biology Transfection p38 Mitogen-Activated Protein Kinases Monocytes Proinflammatory cytokine Cell Line Immunology and Allergy Humans Protein kinase A Gene knockdown Interleukin-6 Tumor Necrosis Factor-alpha RNA-Binding Proteins Dual Specificity Phosphatase 1 Endotoxins MicroRNAs Gene Knockdown Techniques Protein Biosynthesis TLR4 Cancer research MAPK phosphatase Tumor necrosis factor alpha Clinical Immunology Signal transduction Signal Transduction |
Popis: | Autotoxic production of proinflammatory mediators during early sepsis induces excessive inflammation, and their later suppression may limit the immune response. We previously reported that sepsis differentially represses transcription and translation of tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) to reprogram sepsis inflammation. This switch is gene specific and plays a crucial role in the clinically relevant syndrome of endotoxin adaptation/tolerance, multiorgan failure, and poor sepsis outcome. To further define the mechanisms responsible for translation disruption that follows inflammation induction, we used THP-1 human promonocytes as a model of Toll-like receptor 4 (TLR4) responses found in sepsis. We showed that phosphorylation-dependent activation of p38 mitogen-activated protein kinase (MAPK) and translation disruption of TNF-α and IL-6 follow increased MAPK phosphatase 1 (MKP-1) expression and that MKP-1 knockdown rephosphorylates p38 and restores the capacity to translate TNF-α and IL-6 mRNAs. We also observed that the RNA-binding protein motif 4 (RBM4), a p38 MAPK target, accumulates in an unphosphorylated form in the cytosol in endotoxin-adapted cells, suggesting that dephosphorylated RBM4 may function as a translational repressor. Moreover, MKP-1 knockdown promotes RBM4 phosphorylation, blocks its transfer from the nucleus to the cytosol, and reverses translation repression. We also found that microRNA 146a (miR-146a) knockdown prevents and miR-146a transfection induces MKP-1 expression, which lead to increases or decreases in TNF-α and IL-6 translation, respectively. We conclude that a TLR4-, miR-146a-, p38 MAPK-, and MKP-1-dependent autoregulatory pathway regulates the translation of proinflammatory genes during the acute inflammatory response by spatially and temporally modifying the phosphorylation state of RBM4 translational repressor protein. |
Databáze: | OpenAIRE |
Externí odkaz: |