Dirichlet degrees of freedom need not be eliminated
Autor: | Joseph M. Maubach |
---|---|
Přispěvatelé: | Scientific Computing, Mathematics and Computer Science |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
Numerical Analysis
Mathematical optimization Discretization Iterative method Applied Mathematics Numerical analysis Degrees of freedom System of linear equations Dirichlet distribution Computational Mathematics symbols.namesake Dirichlet boundary condition ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION symbols Initial value problem Applied mathematics Mathematics |
Zdroj: | Applied Numerical Mathematics, 58(12), 1852-1860. Elsevier |
ISSN: | 0168-9274 |
DOI: | 10.1016/j.apnum.2007.11.007 |
Popis: | Dirichlet degrees of freedom are often eliminated from discretized initial value boundary value equations. This has advantages (creation of a symmetric system of equations and simplification of the equations) and a potential disadvantage (modification of the equations could lead to a more complex and less convenient implementation). This paper demonstrates that no elimination is needed to keep all elimination-related advantages - if one uses standard iterative solution techniques in a proper manner. |
Databáze: | OpenAIRE |
Externí odkaz: |