A statistical estimator of turbulence intermittency in physical and numerical experiments
Autor: | H. Kahalerras, C. Auriault, Benoît Chabaud, Bernard Castaing, Yves Gagne, O. Chanal, Yann Malecot |
---|---|
Přispěvatelé: | Risques, Vulnérabilité des structures et comportement mécanique des matériaux (RV), Laboratoire sols, solides, structures - risques [Grenoble] (3SR), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB), Centre de Recherches sur les Très Basses Températures (CRTBT), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF) |
Rok vydání: | 2000 |
Předmět: |
010504 meteorology & atmospheric sciences
Turbulence Extrapolation Estimator Reynolds number Probability density function Reynolds stress equation model [PHYS.MECA]Physics [physics]/Mechanics [physics] Condensed Matter Physics 01 natural sciences 010305 fluids & plasmas Electronic Optical and Magnetic Materials law.invention Physics::Fluid Dynamics symbols.namesake law Intermittency 0103 physical sciences symbols Statistical physics 0105 earth and related environmental sciences Mathematics Large eddy simulation |
Zdroj: | The European Physical Journal B: Condensed Matter and Complex Systems The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2000, 16 (3), pp.549-561 Scopus-Elsevier |
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1007/s100510070216 |
Popis: | cited By 32; International audience; The velocity increments statistic in various turbulent flows is analysed through the hypothesis that different scales are linked by a multiplicative process, of which multiplier is infinitely divisible. This generalisation of the Kolmogorov-Obukhov theory is compatible with the finite Reynolds number value of real flows, thus ensuring safe extrapolation to the infinite Reynolds limit. It exhibits a β estimator universally depending on the Reynolds number of the flow, with the same law either for Direct Numerical Simulations or experiments, both for transverse and longitudinal increments. As an application of this result, the inverse dependence Rλ = f(β) is used to define an unbiased Rλ value for a Large Eddy Simulation from the resolved scales velocity statistics. However, the exact shape of the multiplicative process, though independent of the Reynolds number for a given experimental setup, is found to depend significantly on this setup and on the nature of the increment, longitudinal or transverse. The asymmetry of longitudinal velocity increments probability density functions exhibits similarly a dependence with the experimental setup, but also systematically depends on the Reynolds number. |
Databáze: | OpenAIRE |
Externí odkaz: |