Fast and accurate surface normal integration on non-rectangular domains
Autor: | Ali Sharifi Boroujerdi, Yvain Quéau, Martin Bähr, Michael Breuß, Jean-Denis Durou |
---|---|
Přispěvatelé: | Brandenburg University of Technology [Cottbus – Senftenberg] (BTU), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Real Expression Artificial Life (IRIT-REVA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Brandenburgische Technische Universität Cottbus-Senftenberg - BTU (GERMANY), Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
FOS: Computer and information sciences
Mathematical optimization Photometric stereo Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition Fast marching method 68U10 Preconditioning 02 engineering and technology Conjugate gradient method lcsh:QA75.5-76.95 Computational science [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Poisson integration Traitement des images [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Artificial Intelligence Robustness (computer science) preconditioning FOS: Mathematics 0202 electrical engineering electronic engineering information engineering Conjugate residual method Traitement du signal et de l'image 3D reconstruction Synthèse d'image et réalité virtuelle fast marching method Mathematics Computer Science - Numerical Analysis [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 020207 software engineering Numerical Analysis (math.NA) Krylov subspace Vision par ordinateur et reconnaissance de formes Solver Intelligence artificielle Computer Graphics and Computer-Aided Design [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] Surface normal integration [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] conjugate gradient method Krylov subspace methods 020201 artificial intelligence & image processing Computer Vision and Pattern Recognition lcsh:Electronic computers. Computer science surface normal integration |
Zdroj: | Computational Visual Media, Vol 3, Iss 2, Pp 107-129 (2017) Computational Visual Media Computational Visual Media, Springer, 2017, vol. 3 (n° 2), pp. 107-129. ⟨10.1007/s41095-016-0075-z⟩ |
ISSN: | 2096-0662 2096-0433 |
DOI: | 10.1007/s41095-016-0075-z |
Popis: | The integration of surface normals for the purpose of computing the shape of a surface in 3D space is a classic problem in computer vision. However, even nowadays it is still a challenging task to devise a method that combines the flexibility to work on non-trivial computational domains with high accuracy, robustness and computational efficiency. By uniting a classic approach for surface normal integration with modern computational techniques we construct a solver that fulfils these requirements. Building upon the Poisson integration model we propose to use an iterative Krylov subspace solver as a core step in tackling the task. While such a method can be very efficient, it may only show its full potential when combined with a suitable numerical preconditioning and a problem-specific initialisation. We perform a thorough numerical study in order to identify an appropriate preconditioner for our purpose. To address the issue of a suitable initialisation we propose to compute this initial state via a recently developed fast marching integrator. Detailed numerical experiments illuminate the benefits of this novel combination. In addition, we show on real-world photometric stereo datasets that the developed numerical framework is flexible enough to tackle modern computer vision applications. |
Databáze: | OpenAIRE |
Externí odkaz: |