Stability and Analytic Solutions of an Optimal Control Problem on the Schrödinger Lie Group
Autor: | Remus-Daniel Ene, Camelia Petrişor, Camelia Pop |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
QC1-999
02.20.sv General Physics and Astronomy 37n20 periodic solutions 01 natural sciences Stability (probability) symbols.namesake 02.60.-x Applied mathematics 0101 mathematics optimal homotopy asymptotic method Mathematics 65p40 Nonlinear stability Physics 010102 general mathematics Lie group Optimal control 74h10 010101 applied mathematics optimal control problem symbols 37j25 nonlinear stability Schrödinger's cat |
Zdroj: | Open Physics, Vol 14, Iss 1, Pp 549-558 (2016) |
ISSN: | 2391-5471 |
Popis: | The nonlinear stability and the existence of the periodic solutions for an optimal control problem on the Schrödinger Lie group are discussed. The analytic solutions via optimal homotopy asymptotic method of the dynamics and numerical simulations are presented, too. |
Databáze: | OpenAIRE |
Externí odkaz: |