Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at hyperion treatment plant

Autor: R. Iranpour, H.H.J. Cox
Rok vydání: 2007
Předmět:
Zdroj: Biotechnology and Bioengineering. 97:19-39
ISSN: 1097-0290
0006-3592
DOI: 10.1002/bit.21176
Popis: This paper describes 5 phases of full-scale testing at the City of Los Angeles Hyperion Treatment Plant (HTP) for producing Class A biosolids (U.S. EPA Part 503 Biosolids Rule) by thermophilic anaerobic digestion. Phases I and II were tests with a two-stage continuous-batch process in a thermophilic battery of six digesters and a designated post-digestion train that was isolated from mesophilic operations. These tests demonstrated that digester outflow biosolids met the Class A limits for fecal coliforms and Salmonella sp. However, fecal coliform densities sharply increased during post-digestion. The recurrence was possibly related to a combination of a large drop of the biosolids temperature after the dewatering centrifuges and contamination of thermophilically digested biosolids from mesophilic operations. Phase III was conducted after insulation and electrical heat-tracing of the post-digestion train to maintain a biosolids temperature throughout post-digestion at about the same level as in the digester outflow. Biosolids monitoring at the last points of plant control (silos at Truck Loading Facility and farm for land application) indicated that fecal coliform recurrence was prevented. After completing the conversion of HTP to thermophilic operation, certification tests of Phases IV and V demonstrated Class A compliance of a two-stage continuous-batch process under Alternatives 1 and 3 of the Part 503 Biosolids Rule, respectively. HTP received the permit for Class A (indeed exceptional quality) biosolids land application in Kern County, California, in December 2002 under Alternative 3. Since 2003, HTP has consistently complied with the federal and local standards for Class A biosolids, indicating that Class A limits can be met under conditions less stringent than defined by the Alternative 1 time-temperature requirement for batch treatment.
Databáze: OpenAIRE