Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells
Autor: | Wilhelmus M. M. Kessels, Ronn Andriessen, Marcel A. Verheijen, C. H. L. Weijtens, Saurabh Karwal, Lachlan E. Black, Dibyashree Koushik, Sjoerd Veenstra, Valerio Zardetto, Roderick van Gils, Yinghuan Kuang, Mariadriana Creatore |
---|---|
Přispěvatelé: | Plasma & Materials Processing, Applied Physics and Science Education, Molecular Materials and Nanosystems, Interfaces in future energy technologies, Atomic scale processing, Processing of low-dimensional nanomaterials |
Rok vydání: | 2018 |
Předmět: |
Solar cells
Open circuit voltage Maximum power point Materials science One-sun illumination Analytical chemistry 02 engineering and technology Perovskite 010402 general chemistry Power conversion efficiencies perovskite solar cells 01 natural sciences Electron transport properties Atomic layer deposited Electron transport layers Atomic layer deposition Inert atmospheres Electrical resistivity and conductivity General Materials Science tin oxide Perovskite (structure) Resistive touchscreen Perovskite solar cells Open-circuit voltage Temperature stability 021001 nanoscience & nanotechnology Tin oxide inorganic electron transport layer 0104 chemical sciences Low temperature plasmas Conduction bands atomic layer deposition Conduction band offset interface Ultraviolet photoelectron spectroscopy 0210 nano-technology Layer (electronics) |
Zdroj: | ACS Applied Materials & Interfaces, 10(36), 30367-30378. American Chemical Society ACS Applied Materials and Interfaces, 36, 10, 30367-30378 |
ISSN: | 1944-8252 1944-8244 |
DOI: | 10.1021/acsami.8b09515 |
Popis: | In this work, we present an extensive characterization of plasma-assisted atomic-layer-deposited SnO2 layers, with the aim of identifying key material properties of SnO2 to serve as an efficient electron transport layer in perovskite solar cells (PSCs). Electrically resistive SnO2 films are fabricated at 50 °C, while a SnO2 film with a low electrical resistivity of 1.8 × 10-3 ω cm, a carrier density of 9.6 × 1019 cm-3, and a high mobility of 36.0 cm2/V s is deposited at 200 °C. Ultraviolet photoelectron spectroscopy indicates a conduction band offset of ∼0.69 eV at the 50 °C SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I2.7Br0.3) interface. In contrast, a negligible conduction band offset is found between the 200 °C SnO2 and the perovskite. Surprisingly, comparable initial power conversion efficiencies (PCEs) of 17.5 and 17.8% are demonstrated for the champion cells using 15 nm thick SnO2 deposited at 50 and 200 °C, respectively. The latter gains in fill factor but loses in open-circuit voltage. Markedly, PSCs using the 200 °C compact SnO2 retain their initial performance at the maximum power point over 16 h under continuous one-sun illumination in inert atmosphere. Instead, the cell with the 50 °C SnO2 shows a decrease in PCE of approximately 50%. © 2018 American Chemical Society. |
Databáze: | OpenAIRE |
Externí odkaz: |