Purification, amino acid sequence and characterisation of kangaroo IGF-I
Autor: | G L Francis, John F. Wheldrake, Zee Upton, C A Yandell |
---|---|
Rok vydání: | 1998 |
Předmět: |
Endocrinology
Diabetes and Metabolism medicine.medical_treatment Molecular Sequence Data Radioimmunoassay Macropus fuliginosus law.invention Radioligand Assay Insulin-like growth factor Endocrinology Insulin-Like Growth Factor II Salmon law Protein biosynthesis medicine Animals Humans Amino Acid Sequence Insulin-Like Growth Factor I Peptide sequence Chromatography High Pressure Liquid Macropodidae chemistry.chemical_classification Analysis of Variance Dose-Response Relationship Drug Sequence Homology Amino Acid biology Protein primary structure biology.organism_classification Amino acid chemistry Biochemistry Polyclonal antibodies Chromatography Gel biology.protein Recombinant DNA Biological Assay Chickens |
Zdroj: | Journal of Endocrinology. 156:195-204 |
ISSN: | 1479-6805 0022-0795 |
DOI: | 10.1677/joe.0.1560195 |
Popis: | Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar. |
Databáze: | OpenAIRE |
Externí odkaz: |