Global ill-posedness for a dense set of initial data to the Isentropic system of gas dynamics
Autor: | Alexis F. Vasseur, Cheng Yu, Robin Ming Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Dense set
Generalization General Mathematics Degenerate energy levels Mathematical analysis Regular polygon Mathematics::Analysis of PDEs Reynolds stress Euler system Space (mathematics) Physics::Fluid Dynamics Mathematics - Analysis of PDEs Inviscid flow FOS: Mathematics 35Q31 76N10 35L65 Mathematics Analysis of PDEs (math.AP) |
Popis: | In dimension $n=2$ and $3$, we show that for any initial datum belonging to a dense subset of the energy space, there exist infinitely many global-in-time admissible weak solutions to the isentropic Euler system whenever $1 Comment: 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |