Quadratic Design of Robust Controllers for Uncertain T-S Models with D-Stability Contraints

Autor: Kevin Guelton, Laurent Arcese, Abdelmadjid Cherifi
Přispěvatelé: Centre de Recherche en Sciences et Technologies de l'Information et de la Communication - EA 3804 (CRESTIC), Université de Reims Champagne-Ardenne (URCA), Centre de Recherche en Economie et Statistique [Bruz] (CREST), Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: IFAC Conference on Intelligent Control and Automation Sciences (ICONS)
IFAC Conference on Intelligent Control and Automation Sciences (ICONS), 2016, Reims, France. pp.19-24, ⟨10.1016/j.ifacol.2016.07.083⟩
DOI: 10.1016/j.ifacol.2016.07.083⟩
Popis: This paper deals with the robust D-stabilization of uncertain Takagi-Sugeno (T-S) fuzzy systems. New Linear Matrix Linearity (LMI) conditions are proposed for the design of non Parallel-Distributed-Compensation (non-PDC) controllers with D-stability constraints, i.e forcing the poles of each linear polytopes of the closed-loop T-S plant with model uncertainties to belong in a prescribed LMI region. The LMI conditions are obtained through the use of a quadratic Lyapunov function candidate and relaxed by the introduction of free weighting matrices. To illustrate the effectiveness of the proposed approach, the D-stabilization of an academic example of a fourth-order uncertain T-S model is provided in simulation.
Databáze: OpenAIRE