Upregulation of the dorsal raphe nucleus-prefrontal cortex serotonin system by chronic treatment with escitalopram in hyposerotonergic Wistar-Kyoto rats

Autor: Naoki Sotogaku, Akinori Nishi, Yukie Kawahara, Makiko Yamada, Yuki Kishikawa, Joost H.A. Folgering, Hiroshi Kawahara, Eliyahu Dremencov, Wilfred J. Poppinga, Fumi Kaneko
Přispěvatelé: Molecular Pharmacology, Faculteit Medische Wetenschappen/UMCG, Groningen Research Institute of Pharmacy
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Neuropharmacology, 72, 169-178. PERGAMON-ELSEVIER SCIENCE LTD
ISSN: 0028-3908
Popis: Wistar-Kyoto (WKY) rats are sensitive to chronic stressors and exhibit depression-like behavior. Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons projecting to the prefrontal cortex (PFC) comprise the important neurocircuitry underlying the pathophysiology of depression. To evaluate the DRN-PFC 5-HT system in WKY rats, we examined the effects of escitalopram (ESCIT) on the extracellular 5-HT level in comparison with Wistar rats using dual-probe microdialysis. The basal levels of 5-HT in the DRN, but not in the PFC, in WKY rats was reduced as low as 30% of Wistar rats. Responses of 5-HT in the DRN and PFC to ESCIT administered systemically and locally were attenuated in WRY rats. Feedback inhibition of DRN 5-HT release induced by ESCIT into the PFC was also attenuated in WKY rats. Chronic ESCIT induced upregulation of the DRN-PFC 5-HT system in WRY rats, with increases in basal 5-HT in the DRN, responsiveness to ESCIT in the DRN and PFC, and feedback inhibition, whereas downregulation of these effects was induced in Wistar rats. Thus, the WRY rat is an animal model of depression with low activity of the DRN-PFC 5HT system. The finding that chronic ESCIT upregulates the 5-HT system in hyposerotonergic WRY rats may contribute to improved understanding of mechanisms of action of antidepressants, especially in depression with 5-HT deficiency. (C) 2013 Elsevier Ltd. All rights reserved.
Databáze: OpenAIRE