An alginate/poly(N-isopropylacrylamide)-based composite hydrogel dressing with stepwise delivery of drug and growth factor for wound repair

Autor: Xilin Lin, Lin Du, Mei Tu, Jianhao Zhao, Xipeng Guan, Youheng Wu, Jianhua Rong, Yuzheng Wu, Shuqiang Zhuang, Jiafeng Zhao
Rok vydání: 2020
Předmět:
Zdroj: Materials scienceengineering. C, Materials for biological applications. 115
ISSN: 1873-0191
Popis: Anti-inflammation and angiogenesis play an essential role in wound healing. In this study, we developed a composite hydrogel dressing with stepwise delivery of diclofenac sodium (DS) and basic fibroblast growth factor (bFGF) in the inflammation stage and new tissue formation stage respectively for wound repair. Sodium alginate (SA) crosslinked by calcium ion acted as the continuous phase, and thermosensitive bFGF-loaded poly(N-isopropylacrylamide) nanogels (pNIPAM NGs, LCST1 ~33 °C) and DS-loaded p(N-isopropylacrylamide-co-acrylic acid) nanogels [p(NIPAM-co-AA) NGs, LCST2 ~40 °C] acted as the dispersed phase. The synthesized SA/bFGF@pNIPAM/DS@p(NIPAM-co-AA) hydrogel presented a desirable storage modulus of ~4500 Pa, a high water equilibrium swelling ratio of ~90, an appropriate water vapor transmission rate of ~2300 g/m2/day, and nontoxicity to human skin fibroblasts. The in vitro thermosensitive cargo delivery of this hydrogel showed that 92% of DS was sustainably delivered at 37 °C within the early three days mimicking the inflammation stage, while 80% of bFGF was controlled released at 25 °C within the later eight days mimicking new tissue formation stage. The in vivo wound healing of rats showed that this composite hydrogel presented a better healing effect with a wound contraction of 96% at 14 d, less inflammation and higher angiogenesis, than all control groups. These findings indicate SA/bFGF@pNIPAM/DS@p(NIPAM-co-AA) composite hydrogel is a potential dressing for wound repair.
Databáze: OpenAIRE