The finite volume element method for the two-dimensional space-fractional convection–diffusion equation
Autor: | Ziwen Jiang, Yanan Bi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Algebra and Number Theory
Partial differential equation Finite volume element method Discretization Applied Mathematics Derivative Fractional derivative Convection–diffusion equation Stability (probability) Two-dimensional space Ordinary differential equation Convergence (routing) QA1-939 Applied mathematics Convergence Stability Analysis Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-22 (2021) |
ISSN: | 1687-1847 |
Popis: | We develop a fully discrete finite volume element scheme of the two-dimensional space-fractional convection–diffusion equation using the finite volume element method to discretize the space-fractional derivative and Crank–Nicholson scheme for time discretization. We also analyze and prove the stability and convergence of the given scheme. Finally, we validate our theoretical analysis by data from three examples. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |