On Segre's Lemma of Tangents
Autor: | Bence Csajbók, Simeon Ball |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics |
Rok vydání: | 2018 |
Předmět: |
Lemma (mathematics)
Combinatorial analysis Mathematics::Commutative Algebra Applied Mathematics 010102 general mathematics Tangent 0102 computer and information sciences Matemàtiques i estadística::Matemàtica discreta [Àrees temàtiques de la UPC] Geometria combinatòria 01 natural sciences sets with no tangents Combinatorics Arc (geometry) Mathematics::Algebraic Geometry 010201 computation theory & mathematics Conic section Kakeya sets lemma of tangents sets with no tangents Discrete Mathematics and Combinatorics 0101 mathematics Kakeya sets lemma of tangents Internal nuclei Anàlisi combinatòria Mathematics |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname |
ISSN: | 1571-0653 |
DOI: | 10.1016/j.endm.2018.06.003 |
Popis: | Segre's lemma of tangents dates back to the 1950's when he used it in the proof of his “arc is a conic” theorem. Since then it has been used as a tool to prove results about various objects including internal nuclei, Kakeya sets, sets with few odd secants and further results on arcs. Here, we survey some of these results and report on how re-formulations of Segre's lemma of tangents are leading to new results. |
Databáze: | OpenAIRE |
Externí odkaz: |