In-Feed Tylosin Phosphate Administration to Feedlot Cattle Minimally Affects Antimicrobial Resistance

Autor: Amit Vikram, John W. Schmidt, Terrance M. Arthur, Shuna A Jones, Eric Miller
Rok vydání: 2020
Předmět:
Zdroj: Journal of food protection.
ISSN: 1944-9097
Popis: The macrolide class antimicrobial tylosin (trade name Tylan) is approved by the U.S. Food and Drug Administration for continuous inclusion in feed for liver abscess prevention. To address concerns that this antimicrobial application may threaten human health, a population of feedlot steers was split into a control treatment (n = 42) and a tylosin treatment (n = 42). Feed rations were identical except for the inclusion of tylosin at 60 to 90 mg per head per day. Fecal swab (n = 335), pen surface material (n = 256), feed (n = 56), and water trough (n = 32) samples were obtained over four sample occasions: November (1 day before the start of tylosin inclusion in feed), January (80 days of tylosin in feed), April (167 days), and June (253 days). These samples were cultured for Escherichia coli, tetracycline-resistant E. coli, third-generation cephalosporin-resistant E. coli, Enterococcus, tetracycline-resistant Enterococcus, and erythromycin-resistant Enterococcus. Metagenomic DNA was isolated from each June fecal swab and pen surface material sample. Metagenomic DNA samples were pooled by pen for 14 fecal and 14 pen surface material samples. Quantitative PCR was employed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). Nasal swab samples (n = 335) were obtained from each steer during each sample period and cultured for the presence of Staphylococcus aureus and methicillin-resistant S. aureus. Of these measurements, only January and June mean fecal swab erythromycin-resistant Enterococcus colony counts for tylosin-treated cattle were significantly higher (P ≤ 0.05) than the range of mean values for control treatments. These results suggest that in-feed tylosin through the end of finishing has a narrow and minimal antimicrobial resistance impact.
Databáze: OpenAIRE