Complement C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodelling

Autor: Klaus Okkenhaug, Clive D'Santos, Charlotte Summers, Marie-Hélène Ruchaud-Sparagano, Jonathan M. Scott, Andrew Conway Morris, A. John Simpson, David K. Menon, Arlette Vassallo, Alex J. Wood, Carmelo Zinnato, Kamal Kishore, Edwin R. Chilvers, Carmen Gonzalez-Tejedo
Rok vydání: 2020
Předmět:
DOI: 10.1101/2020.01.17.907618
Popis: Critical illness is accompanied by the release of large amounts of the anaphylotoxin, C5a. C5a suppresses antimicrobial functions of neutrophils which is associated with adverse outcomes. The signalling pathways that mediate C5a-induced neutrophil dysfunction are incompletely understood. Healthy donor neutrophils exposed to purified C5a demonstrated a prolonged defect (7 hours) in phagocytosis of Staphylococcus aureus. Critical illness is accompanied by the release of large amounts of the anaphylotoxin, C5a. C5a suppresses antimicrobial functions of neutrophils which is associated with adverse outcomes. The signalling pathways that mediate C5a-induced neutrophil dysfunction are incompletely understood. Healthy donor neutrophils exposed to purified C5a demonstrated a prolonged defect (7 hours) in phagocytosis of Staphylococcus aureus. Phosphoproteomic profiling of 2712 phosphoproteins identified persistent C5a signalling and selective impairment of phagosomal protein phosphorylation on exposure to S. aureus. Notable proteins included early endosomal marker ZFYVE16 and V-ATPase proton channel component ATPV1G1. A novel assay of phagosomal acidification demonstrated C5a-induced impairment of phagosomal acidification which was recapitulated in neutrophils from critically ill patients. Examination of the C5a-impaired protein phosphorylation indicated a role for the phosphatidylinositol 3-kinase VPS34 in phagosomal maturation. Inhibition of VPS34 impaired neutrophil phagosomal acidification and killing of S. aureus. This study provides a phosphoproteomic assessment of human neutrophil signalling in response to S. aureus and its disruption by C5a, identifying a defect in phagosomal maturation and new mechanisms of immune failure in critical illness.
Databáze: OpenAIRE