La ecuación logística de múltiples sitios con migración asimétrica
Autor: | Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari |
---|---|
Přispěvatelé: | Université de Saïda Dr Moulay Tahar, University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ITAP, Univ Montpellier, INRAE, Institut Agro, University of Saida, Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) |
Rok vydání: | 2021 |
Předmět: |
Marketing
migración asimétrica Logistic equation Dynamic of population Population dynamics Strategy and Management perfect mixing [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Dinámica de población Dynamical Systems (math.DS) 37N25 92D25 Perfect mixing slow-fast systems sistemas lentos y rápidos Asymmetrical migration Slow-fast systems Media Technology FOS: Mathematics ecuación logís-tica General Materials Science mezcla perfecta Mathematics - Dynamical Systems [SDE.BE]Environmental Sciences/Biodiversity and Ecology asymmetrical migration logistic equation |
Zdroj: | Revista Integración, Volume: 40, Issue: 1, Pages: 25-57, Published: 26 AUG 2022 |
DOI: | 10.48550/arxiv.2103.13144 |
Popis: | This paper considers a multi-patch model, where each patch follows a logistic law, and patches are coupled by asymmetrical migration terms. First, in the case of perfect mixing, i.e when the migration rate tends to infinity, the total population follows a logistic equation with a carrying capacity which in general is different from the sum of the n carrying capacities, and depends on the migration terms. Second, we determine, in some particular cases, the conditions under which fragmentation and asymmetrical migration can lead to a total equilibrium population greater or smaller than the sum of the carrying capacities. Finally, for the three-patch model, we show numerically the existence of at least three critical values of the migration rate for which the total equilibrium population equals the sum of the carrying capacities. Comment: 29 pages, 7 figures, 1 table. Section 5 added in version 2 |
Databáze: | OpenAIRE |
Externí odkaz: |