Whole Body Model Predictive Control with a Memory of Motion: Experiments on a Torque-Controlled Talos

Autor: Nicolas Mansard, Guilhem Saurel, Steve Tonneau, Sylvain Calinon, Rohan Budhiraja, Adria Roig, Teguh Santoso Lembono, Olivier Stasse, Ewen Dantec, Pierre Fernbach, Michel Taix, Sethu Vijayakumar
Přispěvatelé: Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, PAL Robotics, IDIAP Research Institute, TOWARD, University of Edinburgh, IEEE, ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), ANR-16-CE33-0003,LOCO3D,Locomotion en environnement complexe(2016), European Project: 780684,H2020,MEMMO(2018), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), TOrque controlled WAlking Robots Development (TOWARD), Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Conference on Robotics and Automation (ICRA 2021)
International Conference on Robotics and Automation (ICRA 2021), IEEE, May 2021, Xi'an, China. ⟨10.1109/ICRA48506.2021.9560742⟩
ICRA
Dantec, E, Budhiraja, R, Roig, A, Lembono, T, Saurel, G, Stasse, O, Fernbach, P, Tonneau, S, Vijayakumar, S, Calinon, S, Taïx, M & Mansard, N 2021, Whole Body Model Predictive Control with a Memory of Motion: Experiments on a Torque-Controlled Talos . in 2021 IEEE International Conference on Robotics and Automation (ICRA) . Institute of Electrical and Electronics Engineers (IEEE), pp. 8202-8208, 2021 IEEE International Conference on Robotics and Automation, Xi'an, China, 30/05/21 . https://doi.org/10.1109/ICRA48506.2021.9560742
HAL
Popis: This paper presents the first successful experiment implementing whole-body model predictive control with state feedback on a torque-control humanoid robot. We demonstrate that our control scheme is able to do whole-body target tracking, control the balance in front of strong external perturbations and avoid collision with an external object. The key elements for this success are threefold. First, optimal control over a receding horizon is implemented with Crocoddyl, an optimal control library based on differential dynamics programming, providing state-feedback control in less than 10 ms. Second, a warm start strategy based on memory of motion has been implemented to overcome the sensitivity of the optimal control solver to initial conditions. Finally, the optimal trajectories are executed by a low-level torque controller, feedbacking on direct torque measurement at high frequency. This paper provides the details of the method, along with analytical benchmarks with the real humanoid robot Talos.A video of the experiment is available at https://peertube.laas.fr/videos/watch/cbc25927-337c-4635-a1bc-153b9aeb4135
Databáze: OpenAIRE