Programming curvilinear paths of flat inflatables
Autor: | Etienne Reyssat, José Bico, Benoît Roman, Emmanuel Siéfert |
---|---|
Přispěvatelé: | Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2019 |
Předmět: |
Curvilinear coordinates
Multidisciplinary programmable structures Computer science [PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph] Internal pressure Geometry 02 engineering and technology wrinkling instability Inverse problem 021001 nanoscience & nanotechnology Curvature Compression (physics) 01 natural sciences tension field theory Inflatable Physical Sciences 0103 physical sciences Path (graph theory) 010306 general physics 0210 nano-technology Focus (optics) |
Zdroj: | Proceedings of the National Academy of Sciences of the United States of America Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2019, 116 (34), pp.16692-16696. ⟨10.1073/pnas.1904544116⟩ |
ISSN: | 1091-6490 0027-8424 |
Popis: | International audience; Inflatable structures offer a path for light deployable structures in medicine, architecture, and aerospace. In this study, we address the challenge of programming the shape of thin sheets of high-stretching modulus cut and sealed along their edges. Internal pressure induces the inflation of the structure into a deployed shape that maximizes its volume. We focus on the shape and nonlinear mechanics of inflated rings and more generally, of any sealed curvilinear path. We rationalize the stress state of the sheet and infer the counterintuitive increase of curvature observed on inflation. In addition to the change of curvature, wrinkles patterns are observed in the region under compression in agreement with our minimal model. We finally develop a simple numerical tool to solve the inverse problem of programming any 2-dimensional (2D) curve on inflation and illustrate the application potential by moving an object along an intricate target path with a simple pressure input. |
Databáze: | OpenAIRE |
Externí odkaz: |