Fractional approximations of abstract semilinear parabolic problems

Autor: Alexandre N. Carvalho, Flank D. M. Bezerra, Marcelo J. D. Nascimento
Rok vydání: 2020
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: In this paper we study the abstract semilinear parabolic problem of the form \begin{document}$ \frac{du}{dt}+Au = f(u), $\end{document} as the limit of the corresponding fractional approximations \begin{document}$ \frac{du}{dt} + A^{\alpha}u = f(u), $\end{document} in a Banach space \begin{document}$ X $\end{document} , where the operator \begin{document}$ A:D(A) \subset X \to X $\end{document} is a sectorial operator in the sense of Henry [ 22 ]. Under suitable assumptions on nonlinearities \begin{document}$ f:X^\alpha\to X $\end{document} ( \begin{document}$ X^\alpha: = D(A^\alpha $\end{document} )), we prove the continuity with rate (with respect to the parameter \begin{document}$ \alpha $\end{document} ) for the global attractors (as seen in Babin and Vishik [ 4 ] Chapter 8, Theorem 2.1). As an application of our analysis we consider a fractional approximation of the strongly damped wave equations and we study the convergence with rate of solutions of such approximations.
Databáze: OpenAIRE