Coupling visualization and data analysis for knowledge discovery from multi-dimensional scientific data

Autor: Hans Hagen, Mark D. Biggin, Sean Ahern, Michael B. Eisen, Angela H. DePace, Gunther H. Weber, Peter Messmer, Hank Childs, Daniela Ushizima, E. Wes Bethel, Jitendra Malik, Jeremy S. Meredith, Cameron Geddes, Kesheng Wu, Charless C. Fowlkes, Estelle Cormier-Michel, Prabhat, Soile V.E. Keranen, Min-Yu Huang, Bernd Hamann, Oliver Rubel, Chris L. Luengo Hendriks, David W. Knowles
Rok vydání: 2013
Předmět:
Zdroj: ICCS
ISSN: 1877-0509
Popis: Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies—such as efficient data management—supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.
Databáze: OpenAIRE