A q-Atomic Decomposition of Weighted Tent Spaces on Spaces of Homogeneous Type and Its Application
Autor: | Liang Song, Liangchuan Wu |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
010102 general mathematics Mathematics::Classical Analysis and ODEs 42B35 42B30 47F05 Hardy space Type (model theory) 01 natural sciences Functional Analysis (math.FA) Mathematics - Functional Analysis Atomic decomposition symbols.namesake Mathematics - Analysis of PDEs Differential geometry Fourier analysis Homogeneous 0103 physical sciences FOS: Mathematics Decomposition (computer science) symbols 010307 mathematical physics Geometry and Topology 0101 mathematics Analysis of PDEs (math.AP) Mathematics |
Zdroj: | The Journal of Geometric Analysis. 31:3029-3059 |
ISSN: | 1559-002X 1050-6926 |
DOI: | 10.1007/s12220-020-00382-6 |
Popis: | The theory of tent spaces on $\mathbb{R}^n$ was introduced by Coifman, Meyer and Stein, including atomic decomposition, duality theory and so on. Russ generalized the atomic decomposition for tent spaces to the case of spaces of homogeneous type $(X,d,\mu)$. The main purpose of this paper is to extend the results of Coifman, Meyer, Stein and Russ to weighted version. More precisely, we obtain a $q$-atomic decomposition for the weighted tent spaces $T^p_{2,w}(X)$, where $0 Comment: 28 pages |
Databáze: | OpenAIRE |
Externí odkaz: |