Spectral stability under removal of small capacity sets and applications to Aharonov–Bohm operators

Autor: Laura Abatangelo, Luc Hillairet, Veronica Felli, Corentin Léna
Přispěvatelé: Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Abatangelo, L, Felli, V, Hillairet, L, Lena, C
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Mathematics::Analysis of PDEs
Aharonov-Bohm operators
01 natural sciences
Dirichlet distribution
Asymptotics of eigenvalues
symbols.namesake
Mathematics - Analysis of PDEs
Dirichlet eigenvalue
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Point (geometry)
[MATH]Mathematics [math]
0101 mathematics
MAT/05 - ANALISI MATEMATICA
ComputingMilieux_MISCELLANEOUS
Mathematical Physics
Mathematics
Aharonov–Bohm operators
010102 general mathematics
Mathematical analysis
Spectral stability
Order (ring theory)
Statistical and Nonlinear Physics
Mathematics::Spectral Theory
Eigenfunction
Term (time)
010101 applied mathematics
Asymptotics of eigenvalue
Small capacity sets
symbols
Aharonov–Bohm operator
Geometry and Topology
Asymptotic expansion
small capacity sets
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Analysis of PDEs (math.AP)
Zdroj: Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, 2019, 9 (2), pp.379-427. ⟨10.4171/JST/251⟩
ISSN: 1664-039X
1664-0403
DOI: 10.4171/JST/251⟩
Popis: We first establish a sharp relation between the order of vanishing of a Dirichlet eigenfunction at a point and the leading term of the asymptotic expansion of the Dirichlet eigenvalue variation, as a removed compact set concentrates at that point. Then we apply this spectral stability result to the study of the asymptotic behaviour of eigenvalues of Aharonov-Bohm operators with two colliding poles moving on an axis of symmetry of the domain.
Databáze: OpenAIRE