Reductive nitrosylation of **Methanosarcina acetivorans** protoglobin : a comparative study
Autor: | Marco Nardini, Sylvia Dewilde, Chiara Ciaccio, Martino Bolognesi, Alessandra Pesce, Massimo Coletta, Paolo Ascenzi |
---|---|
Přispěvatelé: | Ascenzi, Paolo, Pesce, A, Nardini, M, Bolognesi, M, Ciaccio, C, Coletta, M, Dewilde, S. |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Stereochemistry
Nitrogen Archaeal Proteins Inorganic chemistry Biophysics Bis-tris propane chemistry.chemical_element Biochemistry Oxygen Ferric Compounds Ferrous Catalysis Reductive nitrosylation of ferric chemistry.chemical_compound medicine Ferrous Compounds Settore BIO/10 Methanosarcina acetivorans Molecular Biology Biology Kinetic biology Physics Nitrosylation Cell Biology biology.organism_classification Reactive Nitrogen Species Globins Kinetics Chemistry chemistry Methanosarcina Methanosarcina acetivorans protoglobin Ferric Thermodynamics Human medicine Reactive Oxygen Species Nitrosylation of ferrous Methanosarcina acetivorans protoglobin Carbon monoxide medicine.drug |
Zdroj: | Biochemical and biophysical research communications |
ISSN: | 0006-291X |
Popis: | Highlights: ► Methanosarcina acetivorans is a strictly anaerobic non-motile methane-producing Archaea. ► M. acetivorans protoglobin binds preferentially O{sub 2} rather than CO. ► Reductive nitrosylation of ferric M. acetivorans protoglobin. ► Nitrosylation of ferrious M. acetivorans protoglobin. ► M. acetivorans protoglobin is a scavenger of RNS and ROS. -- Abstract: Methanosarcina acetivorans is a strictly anaerobic non-motile methane-producing Archaea expressing protoglobin (Pgb) which might either facilitate O{sub 2} detoxification or act as a CO sensor/supplier in methanogenesis. Unusually, M. acetivorans Pgb (MaPgb) binds preferentially O{sub 2} rather than CO and displays anticooperativity in ligand binding. Here, kinetics and/or thermodynamics of ferric and ferrous MaPgb (MaPgb(III) and MaPgb(II), respectively) nitrosylation are reported. Data were obtained between pH 7.2 and 9.5, at 22.0 °C. Addition of NO to MaPgb(III) leads to the transient formation of MaPgb(III)–NO in equilibrium with MaPgb(II)–NO{sup +}. In turn, MaPgb(II)–NO{sup +} is converted to MaPgb(II) by OH{sup −}-based catalysis. Then, MaPgb(II) binds NO very rapidly leading to MaPgb(II)–NO. The rate-limiting step for reductive nitrosylation of MaPgb(III) is represented by the OH{sup −}-mediated reduction of MaPgb(II)–NO{sup +} to MaPgb(II). Present results highlight the potential role of MaPgb in scavenging of reactive nitrogen and oxygen species. |
Databáze: | OpenAIRE |
Externí odkaz: |