Cancer Subtype Discovery Using Prognosis-Enhanced Neural Network Classifier in Multigenomic Data

Autor: Thangamani Murugesan, Prasanna Vasudevan
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Technology in Cancer Research & Treatment
ISSN: 1533-0338
1533-0346
Popis: Objective The main objective in studying large-scale cancer omics is to identify molecular mechanisms of cancer and discover novel biomedical targets. This work not only discovers the cancer subtypes in genome scale data by using clustering and classification but also measures their accuracy. Methods Initially, candidate cancer subtypes are recognized by max-flow/min-cut graph clustering. Finally, prognosis-enhanced neural network classifier is proposed for classification. We analyzed the heterogeneity and identified the subtypes of glioblastoma multiforme, an aggressive adult brain tumor, from 215 samples with microRNA expression (12 042 genes). The samples were classified into 4 different classes such as mesenchymal, classical, proneural, and neural subtypes owing to mutations and gene expression. The results are measured using the metrics such as silhouette width, biological stability index, clustering accuracy, precision, recall, and f-measure. Results Max-flow/min-cut clustering produces higher clustering accuracy of 88.93% for 215 samples. The proposed prognosis-enhanced neural network classifier algorithm produces higher accuracy results of 89.2% for 215 samples efficiently. Conclusion From the experimental results, the proposed prognosis-enhanced neural network classifier is seen as an alternative, which is full of promise for cancer subtype prediction in genome scale data.
Databáze: OpenAIRE