Classification of Alzheimer’s Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network
Autor: | Monika Sethi, Shalli Rani, Puneet Bawa, Sachin Ahuja, Atef Zaguia |
---|---|
Rok vydání: | 2021 |
Předmět: |
Boosting (machine learning)
Article Subject Computer science Computer applications to medicine. Medical informatics Bayesian probability Normal Distribution R858-859.7 Neuroimaging Machine learning computer.software_genre Multimodal Imaging Convolutional neural network General Biochemistry Genetics and Molecular Biology Deep Learning Imaging Three-Dimensional Alzheimer Disease Humans Leverage (statistics) Cognitive Dysfunction Hyperparameter General Immunology and Microbiology business.industry Applied Mathematics Deep learning Bayesian optimization Computational Biology Bayes Theorem General Medicine Prognosis Magnetic Resonance Imaging Bayesian search theory Early Diagnosis Case-Control Studies Modeling and Simulation Neural Networks Computer Artificial intelligence business computer Research Article |
Zdroj: | Computational and Mathematical Methods in Medicine, Vol 2021 (2021) Computational and Mathematical Methods in Medicine |
ISSN: | 1748-6718 1748-670X |
DOI: | 10.1155/2021/4186666 |
Popis: | Alzheimer’s disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |