Global analysis of protein folding using massively parallel design, synthesis, and testing
Autor: | Scott Houliston, Gabriel J. Rocklin, Alex Ford, Tamuka M. Chidyausiku, David Baker, Alexander Lemak, Rashmi Ravichandran, Aaron Chevalier, Cheryl H. Arrowsmith, Lauren Carter, Vikram Khipple Mulligan, Inna Goreshnik |
---|---|
Rok vydání: | 2017 |
Předmět: |
Models
Molecular 0301 basic medicine Protein Folding Protein Conformation DNA Mutational Analysis Protein design Stability (learning theory) Nanotechnology Computational biology Biology Protein Engineering 010402 general chemistry 01 natural sciences Article 03 medical and health sciences Protein structure Amino Acid Sequence Massively parallel Multidisciplinary Protein Stability Proteins DNA Folding (DSP implementation) Protein engineering 0104 chemical sciences 030104 developmental biology Mutation Proteolysis Protein folding Function (biology) |
Zdroj: | Science. 357:168-175 |
ISSN: | 1095-9203 0036-8075 |
DOI: | 10.1126/science.aan0693 |
Popis: | Exploring structure space to understand stability Understanding the determinants of protein stability is challenging because native proteins have conformations that are optimized for function. Proteins designed without functional bias could give insight into how structure determines stability, but this requires a large sample size. Rocklin et al. report a high-throughput protein design and characterization method that allows them to measure thousands of miniproteins (see the Perspective by Woolfson et al. ). Iterative rounds of design and characterization increased the design success rate from 6 to 47%, which provides insight into the balance of forces that determine protein stability. Science , this issue p. 168 ; see also p. 133 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |