The index of Floer moduli problems for parametrized action functionals
Autor: | Alexandru Oancea, Frédéric Bourgeois |
---|---|
Přispěvatelé: | Faculté des Sciences [Bruxelles] (ULB), Université libre de Bruxelles (ULB), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Oancea, Alexandru |
Rok vydání: | 2012 |
Předmět: |
Pure mathematics
Hyperbolic geometry 010102 general mathematics Mathematical analysis Algebraic geometry 01 natural sciences Action (physics) [MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] Moduli space Moduli [MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] Differential geometry Floer homology Mathematics - Symplectic Geometry 0103 physical sciences 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematics::Symplectic Geometry Hamiltonian (control theory) 53D12 53D40 Mathematics |
Zdroj: | Geometriae Dedicata |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-012-9763-8 |
Popis: | We define an index for the critical points of parametrized Hamiltonian action functionals. The expected dimension of moduli spaces of parametrized Floer trajectories equals the difference of indices of the asymptotes. Comment: 18 pages. This paper contains and extends the discussion of the index that was part of the first version of our paper arXiv:0909.4526. To appear in Geometriae Dedicata, Special Issue GESTA 2011 |
Databáze: | OpenAIRE |
Externí odkaz: |