Effect of packing height and location of porous media on heat transfer in a cubical cavity
Autor: | Iman Ataei-Dadavi, Mark J. Tummers, Sasa Kenjeres, Manu Chakkingal, Chris R. Kleijn, Sabino Schiavo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Shifted porous layer Prandtl number Porous media ANSYS-FLUENT Polyhedral mesh 02 engineering and technology 01 natural sciences Isothermal process 010305 fluids & plasmas Physics::Fluid Dynamics symbols.namesake 0203 mechanical engineering Partially filled Pore-structure resolved 0103 physical sciences OpenFOAM Rayleigh scattering Adiabatic process Darcy-Forchheimer assumption Fluid Flow and Transfer Processes Natural convection Mechanical Engineering Rayleigh number Mechanics Condensed Matter Physics 020303 mechanical engineering & transports Heat transfer symbols Porous medium |
Zdroj: | International Journal of Heat and Fluid Flow, 84 |
ISSN: | 0142-727X |
Popis: | We numerically investigate natural convection in a bottom-heated top-cooled cavity, fully and partially filled with adiabatic spheres (with diameter-to-cavity-size ratio d/L=0.2) arranged in a Simple Cubic Packing (SCP) configuration. We study the influence of packing height and location of porous media. We carry out the simulations using water as the working fluid with Prandtl number, Pr=5.4 at Rayleigh number Ra=1.16×105, 1.16 × 106 and 2.31 × 107. The applicability and suitability of Darcy-Forchheimer assumption to predict the global heat transfer is analysed by comparing it with the pore-structure resolved simulations. We found that the heat transfer in pore-structure resolved simulations is comparable to that in fluid-only cavities at high Rayleigh numbers, irrespective of the number of layers of packing and its location. Discrepancies in heat transfer between the Darcy-Forchheimer and the fully resolved simulations are observed when the porous medium is close to the isothermal wall and at high Ra, while it vanishes when the porous medium is away from the isothermal bottom wall. |
Databáze: | OpenAIRE |
Externí odkaz: |