Multi-order vector finite element modeling of 3D magnetotelluric data including complex geometry and anisotropy
Autor: | Bing Zhou, Aixa M. Rivera-Rios, Graham Heinson, Lars Krieger |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Finite element method
010504 meteorology & atmospheric sciences lcsh:Geodesy Boundary (topology) 010502 geochemistry & geophysics 01 natural sciences Domain (mathematical analysis) Software Complex geometry Magnetotellurics Numerical modeling Anisotropy 0105 earth and related environmental sciences lcsh:QB275-343 business.industry lcsh:QE1-996.5 lcsh:Geography. Anthropology. Recreation Geology Geophysics Magnetic field lcsh:Geology Edge elements lcsh:G Space and Planetary Science Electrical resistivity anisotropy business Algorithm |
Zdroj: | Earth, Planets and Space, Vol 71, Iss 1, Pp 1-25 (2019) |
ISSN: | 1880-5981 |
DOI: | 10.1186/s40623-019-1071-1 |
Popis: | We introduce MoVFEM, a computational algorithm for the modeling of three-dimensional magnetotelluric (MT) data using a vector finite element method of specific order from multiple elements’ orders. Our algorithm allows complex geometries, topography, and anisotropic resistivity structures. The software calculates secondary electric and magnetic fields for a plane-wave primary magnetic field. Accurate calculation of fields in the boundary regions of the computational domain are ensured by the implementation of the Generalized Perfect Matched Layers method. We validate the MoVFEM algorithm by applications to various scenarios, which allow a comparison with analytical or accepted numerical solutions where available. The respective results of our algorithm are in good agreement with existing solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |