Décomposition en blocs de la catégorie des représentations lisses ℓ-modulaires de GLn(F) et de ses formes intérieures

Autor: Shaun Stevens, Vincent Sécherre
Přispěvatelé: Laboratoire de Mathématiques de Versailles (LMV), Université Paris-Saclay-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), School of mathemtaics - University fo East Anglia (UEA), University of East Anglia [Norwich] (UEA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Annales Scientifiques de l'École Normale Supérieure
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2016, 49 (3), pp.669-709. ⟨10.24033/asens.2293⟩
ISSN: 0012-9593
1873-2151
DOI: 10.24033/asens.2293⟩
Popis: Let F be a non-Archimedean locally compact field of residue characteristic p, let D be a finite dimensional central division F-algebra and let R be an algebraically closed field of characteristic different from p. To any irreducible smooth representation of G=GL(m,D) with coefficients in R, we can attach a uniquely determined inertial class of supercuspidal pairs of G. This provides us with a partition of the set of all isomorphism classes of irreducible representations of G. We write R(G) for the category of all smooth representations of G with coefficients in R. To any inertial class O of supercuspidal pairs of G, we can attach the subcategory R(O) made of smooth representations all of whose irreducible subquotients are in the subset determined by this inertial class. We prove that R(G) decomposes into the product of the R(O), where O ranges over all possible inertial class of supercuspidal pairs of G, and that each summand R(O) is indecomposable.
37 pages
Databáze: OpenAIRE