Best proximity points for weak $\mathcal{MT}$-cyclic Kannan contractions
Autor: | Ing-Jer Lin, Hossein Lakzian |
---|---|
Rok vydání: | 2018 |
Předmět: |
Matematik
Mathematics::Functional Analysis 010102 general mathematics Banach space General Medicine Function (mathematics) 01 natural sciences 010101 applied mathematics Combinatorics Point (geometry) 0101 mathematics Mathematics Cyclic map Best proximity point $\mathcal{MT}$-cyclic contraction Weak $\mathcal{MT}$-cyclic Kannan contraction |
Zdroj: | Volume: 1, Issue: 1 43-48 Fundamental Journal of Mathematics and Applications |
ISSN: | 2645-8845 |
DOI: | 10.33401/fujma.405536 |
Popis: | In this paper, we introduce a notion of weak $% \mathcal{MT}$-cyclic Kannan contractions with respect to a $\mathcal{MT}$% -function $\varphi$ and then we shall prove some new convergent and existence theorems of best proximity point theorems for these contractions in uniformly Banach spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |