Learning Weighted Automata over Principal Ideal Domains
Autor: | Heerdt, Gerco van, Kupke, C., Rot, J., Silva, A., Goubault-Larrecq, J., König, B. |
---|---|
Přispěvatelé: | Goubault-Larrecq, J., König, B. |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Formal Languages and Automata Theory (cs.FL) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Software Science Computer Science - Formal Languages and Automata Theory Article MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Foundations of Software Science and Computation Structures Goubault-Larrecq, J.; König, B. (ed.), Foundations of Software Science and Computation Structures: 23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020. Proceedings, 602-621. Cham : Springer International Publishing STARTPAGE=602;ENDPAGE=621;ISSN=0302-9743;TITLE=Goubault-Larrecq, J.; König, B. (ed.), Foundations of Software Science and Computation Structures: 23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020. Proceedings Goubault-Larrecq, J.; König, B. (ed.), Foundations of Software Science and Computation Structures: 23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020. Proceedings, pp. 602-621 |
ISSN: | 0302-9743 |
Popis: | In this paper, we study active learning algorithms for weighted automata over a semiring. We show that a variant of Angluin’s seminal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {L}^{\!\star }$$\end{document}L⋆ algorithm works when the semiring is a principal ideal domain, but not for general semirings such as the natural numbers. |
Databáze: | OpenAIRE |
Externí odkaz: |