Cold-restraint stress increases rat fecal pellet output and colonic transit

Autor: F. C. Barone, J. F. Deegan, J. D. Fondacaro, Philip J. Fowler, H.S. Ormsbee, W. J. Price
Rok vydání: 1990
Předmět:
Zdroj: American Journal of Physiology-Gastrointestinal and Liver Physiology. 258:G329-G337
ISSN: 1522-1547
0193-1857
Popis: Increased fecal pellet output that occurs during cold-restraint stress (CRS) was evaluated systematically. Free-feeding rats, which exhibit a reduced occurrence of gastric ulcers under these conditions, were studied. CRS significantly increased fecal pellet production and fluid content. However, the fecal output produced during CRS was not associated with increased gut secretory activity or somatic motor activity associated with cold restraint and did not occur in anesthetized animals. Cold and restraint stress were additive in producing increased fecal output. Significant dose-related decreases in fecal output were produced by drugs that decrease gut transit (i.e., B-HT 920, clonidine, Lomotil, loperamide, and lidamidine). Anticholinergic-antisecretory drugs, antidepressants, and tranquilizers had little effect on fecal output or fluid content. Changes in gastrointestinal transit did not contribute to the increased fecal output during CRS. Transit in the lower small intestine was not altered, but the cecum tended to empty more contents into the large intestine during CRS. Colonic transit was dramatically affected by CRS, which eliminated retrograde transit and produced the evacuation of the majority of colonic contents. The increased colonic transit produced by CRS was decreased in a dose-related fashion by hexamethonium, nifedipine, loperamide, and B-HT 920. In several time-response and drug-inhibition studies during CRS, both fecal pellet output and colonic transit were affected similarly. These data indicate that CRS appears to change central nervous system output to the colon and that it alters colonic smooth muscle motility in a manner that facilitates colonic transit and evacuation. Small intestinal transit is not involved in this phenomenon and is regulated differently during CRS.
Databáze: OpenAIRE