Graphs with bounded tree-width and large odd-girth are almost bipartite

Autor: Daniel Král, Jean-Sébastien Sereni, Alexandr V. Kostochka, Michael Stiebitz
Přispěvatelé: Department of Mathematics [Urbana], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, Institute of Mathematics [Novosibirsk], Institute of Mathematics of Novosibirsk, Institut teoretické informatiky (ITI), Charles University [Prague] (CU), Department of Applied Mathematics (KAM) (KAM), Univerzita Karlova v Praze, Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics - Technical University of Ilmenau, Ilmenau University of Technology [Germany] (TU)
Rok vydání: 2010
Předmět:
Zdroj: Journal of Combinatorial Theory, Series B
Journal of Combinatorial Theory, Series B, Elsevier, 2010, 100 (6), pp.554--559. ⟨10.1016/j.jctb.2010.04.004⟩
ISSN: 0095-8956
1096-0902
DOI: 10.1016/j.jctb.2010.04.004
Popis: International audience; We prove that for every k and every \epsilon > 0, there exists g such that every graph with tree-width at most k and odd-girth at least g has circular chromatic number at most 2 + \epsilon.
Databáze: OpenAIRE