Isoradial immersions
Autor: | Cédric Boutillier, David Cimasoni, Béatrice Tilière |
---|---|
Přispěvatelé: | Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Section de mathématiques [Genève], Université de Genève (UNIGE), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
05C10
05C38 57M15 isoradial graphs 010102 general mathematics 16. Peace & justice 01 natural sciences planar graphs graphes planaires dimères dimers 0103 physical sciences [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics Combinatorics (math.CO) 010307 mathematical physics Geometry and Topology graphes isoradiaux 0101 mathematics MSC: 05C10 05C38 57M15 MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Journal of Graph Theory Journal of Graph Theory, Wiley, In press, ⟨10.1002/jgt.22761⟩ |
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22761⟩ |
Popis: | Isoradial embeddings of planar graphs play a crucial role in the study of several models of statistical mechanics, such as the Ising and dimer models. Kenyon and Schlenker give a combinatorial characterization of planar graphs admitting an isoradial embedding, and describe the space of such embeddings. In this paper we prove two results of the same type for generalizations of isoradial embeddings: isoradial immersions and minimal immersions. We show that a planar graph admits a flat isoradial immersion if and only if its train-tracks do not form closed loops, and that a bipartite graph has a minimal immersion if and only if it is minimal. In both cases we describe the space of such immersions. The techniques used are different in both settings, and distinct from those of Kenyon and Schlenker. We also give an application of our results to the dimer model defined on bipartite graphs admitting minimal immersions. 47 pages, 27 figures. Added in v2: diagram providing a visualisation of main theorems and the result of Kenyon/Schlenker, Corollary 29 proving that $X_G=Y_G$ if $G$ is minimal, $\mathbb{Z}^2$-periodic. Added in v3: Conj 1 is now Thm 31: a graph without train-tracks self-intersection is minimal iff the set of angle maps satisfying Kasteleyn's condition is not empty. v4: accepted version |
Databáze: | OpenAIRE |
Externí odkaz: |