Solving Expensive Multimodal Optimization Problem by a Decomposition Differential Evolution Algorithm

Autor: Weifeng Gao, Maoguo Gong, Zhifang Wei, Gary G. Yen
Rok vydání: 2023
Předmět:
Zdroj: IEEE Transactions on Cybernetics. 53:2236-2246
ISSN: 2168-2275
2168-2267
DOI: 10.1109/tcyb.2021.3113575
Popis: An expensive multimodal optimization problem (EMMOP) is that the computation of the objective function is time consuming and it has multiple global optima. This article proposes a decomposition differential evolution (DE) based on the radial basis function (RBF) for EMMOPs, called D/REM. It mainly consists of two phases: the promising subregions detection (PSD) and the local search phase (LSP). In PSD, a population update strategy is designed and the mean-shift clustering is employed to predict the promising subregions of EMMOP. In LSP, a local RBF surrogate model is constructed for each promising subregion and each local RBF surrogate model tracks a global optimum of EMMOP. In this way, an EMMOP is decomposed into many expensive global optimization subproblems. To handle these subproblems, a popular DE variant, JADE, acts as the search engine to deal with these subproblems. A large number of numerical experiments unambiguously validate that D/REM can solve EMMOPs effectively and efficiently.
Databáze: OpenAIRE