Input and state estimation exploiting input sparsity

Autor: Sophie M. Fosson, Alain Y. Kibangou, Federica Garin, Dennis Swart, Sebin Gracy
Přispěvatelé: Politecnico di Torino = Polytechnic of Turin (Polito), Systèmes Commandés en Réseau (NECS-POST), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ECC 2019-18th European Control Conference
ECC 2019-18th European Control Conference, Jun 2019, Naples, Italy. pp.2344-2349, ⟨10.23919/ECC.2019.8795699⟩
ECC
DOI: 10.23919/ECC.2019.8795699⟩
Popis: Motivated by cyber-physical security applications, we face the problem of estimating the state and the input of a linear system, where the input may represent the presence of adversarial attacks. We consider the case where classical filters cannot be used, because the number of measurements is too low, for example it is lower than the size of the input vector. If the input, although of large size, is known to be sparse, the problem can be tackled using techniques from compressed sensing theory. In this paper, we propose a recursive estimator, based on compressed sensing and Kalman-like filtering, which is able to reconstruct both the state and the input from noisy, compressed measurements. The proposed algorithm is proved to be feasible and numerically efficient, and simulations show a good recovery accuracy with respect to an oracle estimator.
Databáze: OpenAIRE