Well-posedness for scalar conservation laws with moving flux constraints

Autor: Thibault Liard, Benedetto Piccoli
Přispěvatelé: Networked Controlled Systems (NECS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Rutgers University [Camden], Rutgers University System (Rutgers)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: We consider a strongly coupled ODE-PDE system representing moving bottlenecks immersed in vehicular traffic. The PDE consists of a scalar conservation law modeling the traffic flow evolution and the ODE models the trajectory of a slow moving vehicle. The moving bottleneck influences the bulk traffic flow via a point flux constraint, which is given by an inequality on the flux at the slow vehicle position. We prove uniqueness and continuous dependence of solutions with respect to initial data of bounded variation. The proof is based on a new backward in time method established to capture the values of the norm of generalized tangent vectors at every time.
29 pages
Databáze: OpenAIRE