Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques

Autor: Lluís A. Belanche-Muñoz, Gabriel Lopez-Morteo, Jorge E. Ibarra-Esquer, Felix F. Gonzalez-Navarro, María G. Gámez-Moreno, Brenda L. Flores-Rios
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. SOCO - Soft Computing
Jazyk: angličtina
Rok vydání: 2015
Předmět:
musculoskeletal diseases
Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC]
Gene discovery
Facioscapulohumeral Muscular Dystrophy
Biology
Machine learning
computer.software_genre
Machine Learning
Atrophy
Aprenentatge automàtic
Genetics
medicine
Facioscapulohumeral muscular dystrophy
Humans
Biological evidence
Gene Regulatory Networks
Genetic Predisposition to Disease
Muscle
Skeletal

Molecular Biology
Genetic Association Studies
Protein-protein association networks
business.industry
Disease progression
Muscle weakness
General Medicine
Progressive muscle weakness
Selection algorithms
medicine.disease
Classification
Muscular Dystrophy
Facioscapulohumeral

Gene Expression Regulation
Protein Biosynthesis
Mutation
Feature selection
Artificial intelligence
medicine.symptom
business
computer
Distròfia muscular facioescapulohumeral
Gene Discovery
Algorithms
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results.
Databáze: OpenAIRE