Securing the Insecure: A First-Line-of-Defense for Body-Centric Nanoscale Communication Systems Operating in THz Band

Autor: Qammer H. Abbasi, Muhammad Khalid, Hasan T. Abbas, Akram Alomainy, Muhammad Imran, Waqas Aman, Muhammad Mahboob Ur Rahman
Rok vydání: 2021
Předmět:
healthcare systems
Computer science
Normal Distribution
TP1-1185
security
02 engineering and technology
outlier detection
Viterbi algorithm
Biochemistry
Article
Analytical Chemistry
Constant false alarm rate
Computer Communication Networks
symbols.namesake
sensor networks
nanoscale communication
body-centric sensor networks
0202 electrical engineering
electronic engineering
information engineering

Path loss
Computer Simulation
Electrical and Electronic Engineering
Hidden Markov model
Instrumentation
Computer Science::Cryptography and Security
Statistical hypothesis testing
terahertz communication
020203 distributed computing
Chemical technology
Communication
Node (networking)
020206 networking & telecommunications
Atomic and Molecular Physics
and Optics

nano sensors
symbols
authentication
Anomaly detection
False alarm
Algorithm
Algorithms
Zdroj: Sensors (Basel, Switzerland)
Sensors
Volume 21
Issue 10
Sensors, Vol 21, Iss 3534, p 3534 (2021)
ISSN: 1424-8220
Popis: This manuscript presents a novel mechanism (at the physical layer) for authentication and transmitter identification in a body-centric nanoscale communication system operating in the terahertz (THz) band. The unique characteristics of the propagation medium in the THz band renders the existing techniques (say for impersonation detection in cellular networks) not applicable. In this work, we considered a body-centric network with multiple on-body nano-senor nodes (of which some nano-sensors have been compromised) who communicate their sensed data to a nearby gateway node. We proposed to protect the transmissions on the link between the legitimate nano-sensor nodes and the gateway by exploiting the path loss of the THz propagation medium as the fingerprint/feature of the sender node to carry out authentication at the gateway. Specifically, we proposed a two-step hypothesis testing mechanism at the gateway to counter the impersonation (false data injection) attacks by malicious nano-sensors. To this end, we computed the path loss of the THz link under consideration using the high-resolution transmission molecular absorption (HITRAN) database. Furthermore, to refine the outcome of the two-step hypothesis testing device, we modeled the impersonation attack detection problem as a hidden Markov model (HMM), which was then solved by the classical Viterbi algorithm. As a bye-product of the authentication problem, we performed transmitter identification (when the two-step hypothesis testing device decides no impersonation) using (i) the maximum likelihood (ML) method and (ii) the Gaussian mixture model (GMM), whose parameters are learned via the expectation–maximization algorithm. Our simulation results showed that the two error probabilities (missed detection and false alarm) were decreasing functions of the signal-to-noise ratio (SNR). Specifically, at an SNR of 10 dB with a pre-specified false alarm rate of 0.2, the probability of correct detection was almost one. We further noticed that the HMM method outperformed the two-step hypothesis testing method at low SNRs (e.g., a 10% increase in accuracy was recorded at SNR = −5 dB), as expected. Finally, it was observed that the GMM method was useful when the ground truths (the true path loss values for all the legitimate THz links) were noisy.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje