Widened KRIMP : Better Performance through Diverse Parallelism
Autor: | Michael R. Berthold, Oliver R. Sampson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Advances in Intelligent Data Analysis XIII ISBN: 9783319125701 IDA |
Popis: | We demonstrate that the previously introduced Widening framework is applicable to state-of-the-art Machine Learning algorithms. Using Krimp, an itemset mining algorithm, we show that parallelizing the search finds better solutions in nearly the same time as the original, sequential/greedy algorithm. We also introduce Reverse Standard Candidate Order (RSCO) as a candidate ordering heuristic for Krimp. |
Databáze: | OpenAIRE |
Externí odkaz: |