Widened KRIMP : Better Performance through Diverse Parallelism

Autor: Michael R. Berthold, Oliver R. Sampson
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Advances in Intelligent Data Analysis XIII ISBN: 9783319125701
IDA
Popis: We demonstrate that the previously introduced Widening framework is applicable to state-of-the-art Machine Learning algorithms. Using Krimp, an itemset mining algorithm, we show that parallelizing the search finds better solutions in nearly the same time as the original, sequential/greedy algorithm. We also introduce Reverse Standard Candidate Order (RSCO) as a candidate ordering heuristic for Krimp.
Databáze: OpenAIRE